1

this is related to that one $a_n$ is bounded and decreasing

Let for $n\geq 2\quad a_{n}=\prod\limits_{k=2}^{n}\cos\left(\dfrac{\pi }{2^{k}}\right)$ and $b_{n}=a_{n}\cos\left(\dfrac{\pi }{2^{n}}\right)$ and let $c_{n}=a_{n}\sin\left(\dfrac{\pi }{2^{n}}\right)$

Deduce the value of the limits of $a_n, b_n$, and $c_n$.

Educ
  • 4,940

2 Answers2

2

Hint

Notice that

$$\cos\left(\frac \pi{2^k}\right)=\frac12\frac{\sin\left(\frac \pi{2^{k-1}}\right)}{\sin \left(\frac \pi{2^k}\right)}$$ and telescope.

0

From a related post and its solution, $a_n \to \dfrac{2}{\pi} \Rightarrow b_n \to \dfrac{2}{\pi}$ as well. Plus $c_n \to 0$.

DeepSea
  • 78,689