this is related to that one $a_n$ is bounded and decreasing
Let for $n\geq 2\quad a_{n}=\prod\limits_{k=2}^{n}\cos\left(\dfrac{\pi }{2^{k}}\right)$ and $b_{n}=a_{n}\cos\left(\dfrac{\pi }{2^{n}}\right)$ and let $c_{n}=a_{n}\sin\left(\dfrac{\pi }{2^{n}}\right)$
Deduce the value of the limits of $a_n, b_n$, and $c_n$.