How to evaluate $ \int \sec^3x \, \mathrm{d}x$ ?
I tried integration by parts and then I got $$\int \sec^3x \, \mathrm{d}x=\sec x \tan x - \int\sec x \tan^2 x \, \mathrm{d}x.$$ Now I'm stuck solving $\int\sec x \tan^2 x \, \mathrm{d}x$? How to solve that and how to solve my initial question? What is the smartest way solving $ \int \sec^3x \, \mathrm{d}x$?