1

Let $G=D_{2n}=⟨x,y|x^2=y^n=e, $ $yx=xy^{n-1}⟩$

I need to find $G'$ [ the commutator subgroup of $G$.]

I understand that $G'$ is the subgroup generated from $ U=xyx^{-1}y^{-1} , $ $ \ \forall x,y \in G$ So, $U=\langle y^2 \rangle$

What is the strategy here?

Robin
  • 6,201
Nizar Halloun
  • 321
  • 1
  • 3
  • 12
  • 1
    I'd suggest trying with small $n$ first. Also you're missing generators, you need the commutators of all elements while here you've only written $[x,y]$. – GPerez Dec 12 '14 at 14:49
  • @GPerez how can i find the commutattor of group in general..i'm not getting it – Nizar Halloun Dec 12 '14 at 14:57
  • @NizarHalloun: Terminology issue: A "commutator" is an element of a group. You are talking about the "commutator subgroup," which is the subgroup generated by commutators. – Cheerful Parsnip Dec 12 '14 at 15:40

1 Answers1

15

Some ideas: if we write

$$D_{2n}=\langle\;x,y\;:\;\;x^2=y^n=1\;,\;\;xyx=y^{n-1}\;\rangle$$

then we get that

$$\forall\,k\in\Bbb N\;,\;\;[x,y^k]=x^{-1}y^{-k}xy^k=\left(xy^{-k}x\right)y^k=\left(y^{n-1}\right)^{-k}\;y^k=y^{2k}$$

and this means every element in $\;\langle\;y^2\;\rangle\;$ is a commutator.

OTOH, we have that

$$xy(yx)^{-1}=xyxy^{-1}=y^{n-1}y^{-1}=y^{-2}\in\langle\;y^2\;\rangle\implies G/\langle\;y^2\;\rangle\;\;\text{is abelian}\iff G'\le\langle\;y^2\;\rangle$$

The above yields $\;G'=[G:G]=\langle\;y^2\;\rangle\;$ .

Timbuc
  • 34,795