I read in Kolmogorov and Fomin's Элементы теории функций и функционального анализа (p. 472 here) the statement that Volterra operator $A:L_2[a,b]\to L_2[a,b]$ defined by$$(A\varphi)(s):=\int_{[a,s]}K(s,t)\varphi(t)d\mu_t+f(s)$$with $K\in L_2([a,b]^2)$, $f\in L_2[a,b]$, is such that $A^n$ is a contraction for some $n\in\mathbb{N}$ if $K$ is bounded. Kolmogorov and Fomin say that the proof consists of literaly repeating the reasonings of the proof for the case, which can be seen in this translation from Introductory Real Analysis, $A:C[a,b]\to C[a,b]$, $\varphi\mapsto \int_a^s K(s,t)\varphi(t)dt+f$ with $K\in C([a,b]^2)$, $f\in C[a,b]$.
How can it be adapted, or how can it be otherwise proved that $A^n:L_2[a,b]\to L_2[a,b]$ is a contraction for some $n$?
I thank you very much!!!
The trick is that because everything we're integrating is non-negative, increasing the domain increases the values of the integrals, so $\int_a^b \left(\int_a^s|K(s,t)|^2\mathrm{d}\mu_t\right) \left(\int_a^s |\phi_1(t) - \phi_2(t)^2|^2 \mathrm{d}\mu_t\right) \mathrm{d}\mu_s \leq \int_a^b \left(\int_a^b|K(s,t)|^2\mathrm{d}\mu_t\right) \left(\int_a^b |\phi_1(t) - \phi_2(t)^2|^2 \mathrm{d}\mu_t\right)\mathrm{d}\mu_s$...
– Baron Mingus Dec 06 '14 at 16:36