Questions: $\rm\color{#c00}{(1)}$ Is the $[\Longrightarrow]$ implication of $$ \frac{a}{b}\in\left(\mathbb{Z}_{(p)}\right)^{\times}\iff\frac{b}{a}\in\mathbb{Z}_{(p)} $$ obvious?
$\rm\color{#c00}{(2)}$ More generally, is the implication $$ \frac{a}{b}\in \left(S^{-1}R\right)^{\times}\implies\frac{b}{a}\in S^{-1}R $$ true?
It suffices to show $a\in S$. We have $$ \frac{a}{b}\in \left(S^{-1}R\right)^{\times}\iff\exists\frac{x}{y}\in S^{-1}R,\exists t\in S:t(ax-by)=0 $$
Now $tby\in S$, therefore $tax\in S$. We know $S$ is closed under multiplication, but how to infer $a\in S$?
In the case of $\mathbb{Z}_{(p)}$, $S=\mathbb{Z}\backslash p\mathbb{Z}$, hence we have $$ tax\not\in p\mathbb{Z}\implies a\not\in p\mathbb{Z}. $$