Let $A^{\bullet}$ be a graded commutative algebra. Denote by $A^{\bullet}$-mod the category of graded modules over $A^{\bullet}$. Let $A$ be $A^{\bullet}$ considered as an algebra (we forgot grading). Finally let $A$-mod be category of modules over $A$.
So we have an oblivion functor $$ Obl: A^{\bullet}-{\rm mod} \rightarrow A-{\rm mod}.$$
Consider $P^{\bullet} \in A^{\bullet}$-mod such that $Obl(P^{\bullet}) $ is projective in category of $A$-mod.
Question: Is $P^{\bullet}$ projective in category $A^{\bullet}$-mod ?