Mertens' third theorem is just the exponentiated version of the second theorem (without the bounds that Mertens proved for his second theorem):
\begin{align}
-\ln\Biggl(\ln n\prod_{p\leqslant n}\biggl(1 - \frac{1}{p}\biggr)\Biggr)
&= -\ln \ln n - \sum_{p\leqslant n} \ln \biggl(1 - \frac{1}{p}\biggr)\\
&= \Biggl(\sum_{p\leqslant n}\frac{1}{p} - \ln \ln n - M\Biggr) + \Biggl(M - \sum_{p\leqslant n} \biggl(\ln\biggl(1-\frac{1}{p}\biggr) + \frac{1}{p}\biggr)\Biggr),
\end{align}
where the first term converges to $0$ by Mertens' second theorem, and the second term converges to $\gamma$ by definition of $M$.
Mertens' bounds in the second theorem and estimates for
$$\sum_{p > n}\biggl(\ln\biggl(1-\frac{1}{p}\biggr)+\frac{1}{p}\biggr)$$
give you bounds for
$$e^\gamma\ln n\prod_{p\leqslant n}\biggl(1-\frac{1}{p}\biggr),\tag{$\ast$}$$
and conversely bounds for that give you bounds for
$$\left\lvert\sum_{p\leqslant n}\frac{1}{p} - \ln \ln n - M\right\rvert,\tag{$\ast\!\ast$}$$
but it is doubtful whether one can directly prove bounds for $(\ast)$ that give you back Mertens' bounds for $(\ast\ast)$.
One can use Mertens' first theorem to derive the second via an integration by parts, Hardy and Wright for example do that, but don't give explicit bounds on $(\ast\ast)$.
For $x > 0$ we define
$$S(x) := \sum_{p\leqslant x} \frac{\ln p}{p}.$$
Mertens' first theorem tells us
$$\lvert S(x) - \ln x\rvert \leqslant 2 + O(x^{-1}),$$
and we can write
$$T(x) := \sum_{p\leqslant x} \frac{1}{p} = \int_{3/2}^x \frac{1}{\ln t}\,dS(t)$$
with a (Riemann/Lebesgue-) Stieltjes integral. Integration by parts yields
\begin{align}
T(x) &= \int_{3/2}^x \frac{1}{\ln t}\,dS(t)\\
&= \frac{S(x)}{\ln x} - \frac{S(3/2)}{\ln \frac{3}{2}} - \int_{3/2}^x S(t)\,d\biggl(\frac{1}{\ln t}\biggr)\\
&= \frac{S(x)}{\ln x} + \int_{3/2}^x \frac{S(t)}{t(\ln t)^2}\,dt\\
&= \frac{S(x)}{\ln x} + \int_{3/2}^x \frac{dt}{t\ln t} + \int_{3/2}^x \frac{S(t) - \ln t}{t(\ln t)^2}\,dt\\
&= \ln \ln x + \underbrace{1 - \ln \ln \frac{3}{2} + \int_{3/2}^\infty \frac{S(t) - \ln t}{t(\ln t)^2}\,dt}_M + \underbrace{\frac{S(x)-\ln x}{\ln x} - \int_x^\infty \frac{S(t)-\ln t}{t(\ln t)^2}\,dt}_{O\bigl(\frac{1}{\ln x}\bigr)}.
\end{align}
I'm not sure, however, whether one can get exactly Mertens' bounds on $(\ast\ast)$ easily from that.
So in a way, Mertens' first theorem is the most powerful, since it implies the others, at least if we don't need explicit bounds for the differences.