1

Given a function $f$ and a constant $M \ge 0$ such that:

$$ |f(x_1) - f(x_2) |\le M {|x_1 - x_2|}^{\alpha} $$

we say that $f$ satisfies a Lipschitz condition of order $\alpha$. We denote by Lip $\alpha$ the set of all such functions. Consider the following problem:

For $\alpha \in (0,1)$, show that $f(x) = x^{\alpha} $ belongs to Lip $\alpha $.

My proof

Suppose $f(x_1) = x_1^\alpha $ and $f(x_2) = x_2^\alpha $ and then $$ |f(x_1) - f(x_2) | = |x_1^\alpha - x_2^\alpha|\le |x_1 - x_2|^\alpha $$ where $x_1 \ne x_2$.

Note that $ |x_1^\alpha - x_2^\alpha|\le |x_1 - x_2|^\alpha\le M|x_1 - x_2|^\alpha $

Hence, $f(x) = x^\alpha $ belongs to Lip $\alpha$.

Is there anything wrong with my proof? If so please let me know!

user1868607
  • 6,243

0 Answers0