Let $f : \mathbb{R}\rightarrow\mathbb{R}$ be a function with the property $f(x + y) = f(x) + f(y)$ for all $x,y\in \mathbb{R}$. Assume that $\displaystyle\lim_{x\rightarrow 0}f(x) = L$.
1.Calculate $L$.
2.Show that $f$ is continuous at all points in its domain.