Show $$ \int_{-\pi}^{\pi}P(r, \theta)d\theta = 1 $$
Let $\alpha(r) = \frac{r^2 - 1}{2r}$ and $\gamma(r) = -\big(\frac{r^2 + 1}{2r}\big)$. Then $$ \frac{1}{2\pi} \int_{-\pi}^{\pi}\frac{1 - r^2}{1 - 2r\cos(\theta) + r^2}d\theta = \frac{\alpha}{2\pi} \int_{-\pi}^{\pi}\frac{1}{\cos(\theta) + \gamma}d\theta $$ where $$ \frac{r^2 - 1}{2r}\frac{1}{\cos(\theta) - \frac{1}{2r} - \frac{r^2}{2r}} = \frac{1 - r^2}{1 - 2r\cos(\theta) + r^2} $$ Next, let $z = e^{i\theta}$. Then $d\theta = \frac{-i}{z}dz$. Since $\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$, $\cos(\theta) = \frac{z + z^{-1}}{2}$. $$ = \frac{-i\alpha}{\pi}\int_C\frac{1}{z^2 + 2z\gamma + 1}dz $$ and $C$ is the contour oriented counter clockwise with simple poles at $z = -\gamma\pm\sqrt{\gamma^2 - 1}$. Let $f(z) = \frac{1}{z^2 + 2z\gamma + 1}$. Then $$ = \Big(\frac{-i\alpha}{\pi}\Big)2\pi i\sum\text{Res}_{z = z_j}f(z) \tag{1} $$ The only pole in $\lvert z\rvert < 1$ is $z_j = -\gamma + \sqrt{\gamma^2 - 1}$. Then $$ 2\pi i\lim_{z\to z_j}\Bigg[\big(z + \gamma - \sqrt{\gamma^2 - 1}\big) \frac{1}{\big(z_j + \gamma + \sqrt{\gamma^2 - 1}\big) \big(z + \gamma - \sqrt{\gamma^2 - 1}\big)}\Bigg] = \frac{\pi i}{\sqrt{\gamma^2 - 1}} $$ Now, we can substitute $\frac{\pi i}{\sqrt{\gamma^2 - 1}}$ for $2\pi i\sum\text{Res}$ in equation (1). \begin{align*} \Big(\frac{-i\alpha}{\pi}\Big)2\pi i\sum\text{Res}_{z = z_j}f(z) &= \frac{\alpha}{\sqrt{\gamma^2 - 1}}\\ &= \frac{r^2 - 1}{2r\sqrt{\frac{(r^2 + 1)^2}{4r^2} - 1}}\\ &= \frac{r^2 - 1}{\sqrt{(r^2 + 1)^2 - 4r^2}}\\ &= \frac{r^2 - 1}{\sqrt{r^4 - 2r^2 + 1}}\\ &= \frac{(r - 1)(1 + r)}{(r - 1)(r + 1)}\\ &= 1 \end{align*}
I have been unable to convince myself that the only pole in $\lvert z\rvert < 1$ is $z_j = -\gamma + \sqrt{\gamma^2 - 1}$. I know it is the case because if I use the other pole, the integral becomes $-1$