Prove: There exist sets $A$, $B$ with $\mathcal P \left({A \cup B}\right) \not= \mathcal P \left({A}\right) \cup \mathcal P \left({B}\right)$
$\mathcal P$ here is the Power Set
Update: With @Simon S and @Stefanos help, I was able to write the following:
Proof:
Let $A = \{a\}$, $B = \{b\}$, where the element $a\not = b$
$\mathcal P \left({A}\right) = \{ \varnothing, \{a\}\}$
$\mathcal P \left({B}\right) = \{ \varnothing, \{b\}\}$
$\mathcal P \left({A}\right) \cup \mathcal P \left({B}\right) = \{\varnothing,\{a\},\{b\}\}$
$A \cup B = \{a,b\}$
$\mathcal P \left({A \cup B}\right) = \mathcal P \left({\{a,b\}}\right) = \{\varnothing, \{a\}, \{b\}, \{a, b\}\}$
We can see that $\mathcal P \left({A \cup B}\right) \ne \mathcal P \left({A}\right) \cup \mathcal P \left({B}\right)$
Does that look right?