What is the minimum of $$f(a,b,c):=\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}$$ where $a,b,c$ are positive real numbers?
When $a=b=c$, we have $f(a,b,c)=\dfrac{3}{\sqrt{2}}\approx 2.12$
When $a=1,b=c\rightarrow\infty$, we have $f(a,b,c)\rightarrow 2$. So the minimum is at most $2$.