This is a cleaned up and refined repost of my previous attempt, after I did some research on the subject.
SOLVED
The only problem here was that I was making tons of little mistakes, always watch your signs!
Task
$\text{Let } \; c \in \mathbb{R} \; \text{ be a given parameter, with } \; c > 0$
$\text{ Show that } \; f: (\mathbb{R}^3 \setminus \{ \vec{0} \}) \times \mathbb{R} \to \mathbb{R} \; \text{ with:}$
$$ f(x,y,z,t) := \frac {\cos(\|(x,y,z)\|_2 -ct)}{\|(x,y,z)\|_2} $$
$\text{ solves the homogeneous wave equation:}$
$$ \frac {\partial^²f}{\partial x^2}(x,y,z,t) + \frac {\partial^²f}{\partial y^2}(x,y,z,t) + \frac {\partial^²f}{\partial z^2}(x,y,z,t) - \frac {1}{c^2} \frac {\partial^²f}{\partial t^2}(x,y,z,t) = 0 $$
$\text{for all } \; (x,y,z,t) \in (\mathbb{R}^3 \setminus \{ \vec{0} \}) \times \mathbb{R}$
$\text{You may use following rule:}$
$ \text{Let } \; g \in \mathscr{C}^2(\mathbb{R}), r: \mathbb{R}^3 \setminus \{ \vec{0} \} \to \mathbb{R} \text{ with } r(\vec{x}) := \|\vec{x}\|_2 \; \text { and } \; \vec{x} \in \mathbb{R}^3 \setminus \{ \vec{0} \} \; \text{ then: }$
$$ \frac {\partial^2 (g \circ r)}{\partial x_i^2}(\vec{x}) = \frac {g'(r(\vec{x}))}{r(\vec{x})} + \left( g''(r(\vec{x})) - \frac {g'(r(\vec{x}))}{r(\vec{x})} \right) \frac {x_i^2}{r^2(\vec{x})} \quad \text {for $\quad$ i = 1,2,3} $$
My Efforts
$$ r = \|(x,y,z)\|_2 = \sqrt {x^2 + y^2 + z^2} \; (= r(\vec{x})) $$
$$ \frac {\partial^2 f}{\partial t^2}(x,y,z,t) = -\frac {c^2\cos(r-ct)}{r} \Rightarrow \frac {1}{c^2} \frac {\partial^²f}{\partial t^2}(x,y,z,t) = -\frac {\cos(r-ct)}{r} $$
$$ \Rightarrow \frac {\partial^²f}{\partial x^2}(x,y,z,t) + \frac {\partial^²f}{\partial y^2}(x,y,z,t) + \frac {\partial^²f}{\partial z^2}(x,y,z,t) = -\frac {\cos(r-ct)}{r} $$
$$ \sum_{i=1}^{3} \frac {\partial^2 f}{\partial x_i^2}(\vec{x},t) = \sum_{i=1}^{3} \frac {\partial^2 (g \circ r)}{\partial x_i^2}(\vec{x}) $$
$$ = 3 * \frac {g'(r(\vec{x}))}{r(\vec{x})} + \left( g''(r(\vec{x})) - \frac {g'(r(\vec{x}))}{r(\vec{x})} \right) \frac {1}{r(\vec{x})} $$
$$ \Rightarrow 3 * \frac {g'(r(\vec{x}))}{r(\vec{x})} + \left( \frac {g''(r(\vec{x}))}{r(\vec{x})} - \frac {g'(r(\vec{x}))}{r^2(\vec{x})} \right) = -\frac {\cos(r-ct)}{r} $$
$$ g'(r(\vec{x})) = -\frac {\sin(r-ct)}{r} - \frac {\cos(r-ct)}{r^2} $$
$$ g''(r(\vec{x})) = \frac {2\sin(r-ct)}{r^2} - \frac {\cos(r-ct)}{r} + \frac {2\cos(r-ct)}{r^3} $$
$$ \Rightarrow \sum_{i=1}^{3} \frac {\partial^2 f}{\partial x_i^2}(\vec{x},t) = -3\frac {r\sin(r-ct)+\cos(r-ct)}{r^3} + \left( \frac {2\sin(r-ct)}{r^2} - \frac {\cos(r-ct)}{r} + \frac {2\cos(r-ct)}{r^3} + \frac {r\sin(r-ct)+\cos(r-ct)}{r^3}\right) * r^2 $$
$$ = -3\frac {r\sin(r-ct)+\cos(r-ct)}{r^3} + \left( \frac {3r\sin(r-ct) - (r^2-3)\cos(r-ct)}{r^5} \right) * r^2 $$
$$ = -\frac {3r\sin(r-ct)+3\cos(r-ct)}{r^3} + \frac {3r\sin(r-ct) + 3\cos(r-ct) - r^2\cos(r-ct)}{r^3} $$
$$ = -\frac {3r\sin(r-ct)+3\cos(r-ct)}{r^3} + \frac {3r\sin(r-ct) + 3\cos(r-ct)}{r^3} - \frac{r^2\cos(r-ct)}{r^3} = -\frac {\cos(r-ct)}{r} $$
$$ \Rightarrow \sum_{i=1}^{3} \frac {\partial^2 f}{\partial x_i^2}(\vec{x},t) + \frac {\cos(r-ct)}{r} = -\frac {\cos(r-ct)}{r} + \frac {\cos(r-ct)}{r} = 0 $$
Question
Where is my mistake / How to solve this equation?