How to prove the inequality $$ \frac{a}{\sqrt{1+a}}+\frac{b}{\sqrt{1+b}}+\frac{c}{\sqrt{1+c}} \ge \frac{3\sqrt{2}}{2}$$ for $a,b,c>0$ and $abc=1$?
I have tried prove $\frac{a}{\sqrt{1+a}}\ge \frac{3a+1}{4\sqrt{2}}$
Indeed,$\frac{{{a}^{2}}}{1+a}\ge \frac{9{{a}^{2}}+6a+1}{32}$
$\Leftrightarrow 32{{a}^{2}}\ge 9{{a}^{2}}+6a+1+9{{a}^{3}}+6{{a}^{2}}+a$ $\Leftrightarrow 9{{a}^{3}}-17{{a}^{2}}+7a+1\le 0$ $\Leftrightarrow 9{{\left( a-1 \right)}^{2}}\left( a+\frac{1}{9} \right)\le 0$ (!) It is wrong. Advice on solving this problem.
$$ \frac{a}{\sqrt{1+a}}+\frac{b}{\sqrt{1+b}}+\frac{c}{\sqrt{1+c}} \ge 3 \sqrt[3]{\frac{abc}{(1+a)(1+b)(1+c)}} = 3 \frac{1}{\sqrt[3]{(1+a)(1+b)(1+c)}}$$ Not sure if this is a useful stepping stone.
– Simon S Nov 01 '14 at 09:55