3

Does the proof of the widely believed result P $\neq$ NP depend on the proof of NP $\neq$ Co-NP ?

Raphael
  • 73,212
  • 30
  • 182
  • 400
Arjun J Rao
  • 219
  • 1
  • 2

1 Answers1

10

Only in one direction. As $\mathsf{P}=\text{co-}\mathsf{P}$, if $\mathsf{NP}\neq\text{co-}\mathsf{NP}$ then we would know that $\mathsf{P}\neq\mathsf{NP}$. However the reverse implication doesn't hold. If $\mathsf{P}\neq\mathsf{NP}$ then it's possible that either $\mathsf{NP}\neq\text{co-}\mathsf{NP}$ or $\mathsf{NP}=\text{co-}\mathsf{NP}$.

Luke Mathieson
  • 18,373
  • 4
  • 60
  • 87