2

I have the following function:

$\displaystyle\frac{n \cdot 7^n+\frac{8}{n!}}{(n+7) \cdot 7^n}=\Theta(1)$

I don't how they come to this. What is the proper way to analyse a function to theta notation?

Raphael
  • 73,212
  • 30
  • 182
  • 400
soepblik
  • 21
  • 1

1 Answers1

5

You can calculate the limit of the function for $n\to\infty$: \begin{align} \lim_{n\to\infty}\frac{n\cdot7^n+\frac{8}{n!}}{(n+7)\cdot7^n}&=\lim_{n\to\infty}\frac{n\cdot7^n}{(n+7)\cdot7^n}+\lim_{n\to\infty}\frac{\frac{8}{n!}}{(n+7)\cdot7^n}\\ &=\lim_{n\to\infty}\frac{n}{n+7}+\lim_{n\to\infty}\frac{8}{(n+7)\cdot7^n\cdot n!}\\ &=1 + 0\\ &=\Theta(1) \end{align}

siracusa
  • 360
  • 2
  • 13