When performing an insertion/deletion on a red-black tree, how can be argued or proved that it requires at most one/two trinode restructuring(s) respectively? My thoughts so far were: after inserting a node and two consecutive red nodes exist along a path from root to a leaf a restructuring is done followed by recoloring, resulting in a red-black tree. Does this mean that after inserting a node there can only exist at most one double red problem in the tree which requires one restructuring to fix it?
Asked
Active
Viewed 189 times