1

it might be a silly question but i need help please

given RSA system , where $n=pq , p\ and \ q \ are \ primes $ , $ v_0,v_1,v_2, v_3 \ are \ known $

$p^p \equiv v_0 \mod q$

$q^q \equiv v_1 \mod p$

$q^p + p^q \equiv v_2 \mod pq$

$(p+q)^{p+q} \equiv v_3 \mod pq$

Mathmatical facts:

$p^{q-1} \equiv 1 \mod q$

is obtained using $\phi(q)=q-1$ , Fermat: $p^{\phi(q)} \equiv 1 \mod q$

$q^{p-1} \equiv 1 \mod p$

$q^p + p^q \equiv p+q \mod pq$

is obtained using $(p^{q} \equiv p \mod pq) + (q^{p} \equiv q \mod pq)$

$(p+q)^{p+q} \equiv p^{p+q}+ q^{p+q} \mod pq$

Edit : The solution from https://ctf-wiki.github.io/ctf-wiki/crypto/asymmetric/rsa/rsa_theory/#2018-national-security-week-pure-math

is $q=\frac{v_3-v_0*v2}{v_1-v_0}$ where you can rewrite as

$q=\frac{p^{p+q}+ q^{p+q} -p^p*(q^p + p^q)}{q^q-p^p}= \frac{p^{p+q}+ q^{p+q} -p^{p+q}-(pq)^p }{q^q-p^p}= \frac{q^{p}*(q^q-p^p) }{q^q-p^p} = q^p = q $

I can prove this backward how is calculated but what is the fundamental idea that used to bring the above equation?

hardyrama
  • 2,288
  • 1
  • 17
  • 41

0 Answers0