1

I need to crack this linear congruential generator.

I have

$$X_{n+1}=a⋅X_n +b \pmod m$$

I know: $m=31,X_3=30,X_4=19,X_5=26$

How can I find $a,b$ and $X_0$?


I have got already the following equations:

$$26=a \cdot 19+b \pmod{31}$$

$$19=a \cdot 30+b \pmod{31}$$


substruct 2 equations to get

$$7= -11 \cdot a \pmod{31}$$ $$7= 20 \cdot a \pmod{31}$$

the inverse of 20 is 14 in $\bmod 31$, $20 \cdot 14 = 1 \pmod{31}$.

$$7 \cdot 14= 14 \cdot 20 \cdot a \pmod{31}$$

$$7 \cdot 14= a \pmod{31}$$

kelalaka
  • 49,797
  • 12
  • 123
  • 211
Antoshka
  • 11
  • 2

0 Answers0