In this paper authors claim that $\{0,1\}$-matrices are almost-MDS (have branch number $n - 1$) on when $n$ is $2, 3,$ or $4$.
For example, how can this two matrices have the same branch number? $$\begin{pmatrix}0&1&1&1\\ 1&0&1&1\\ 1&1&0&1\\ 1&1&1&0\end{pmatrix}$$
$$\begin{pmatrix}0&1&1&1&1\\ 1&0&1&1&1\\ 1&1&0&1&1\\ 1&1&1&0&1\\ 1&1&1&1&0\end{pmatrix}$$
Why branch number doesn't scale up with matrix size?
I'm math dummy. It seems to me that bigger (more 1s) should be better for diffusion. Is there simple logical plain English explanation?