I have read the paper Differential Power Analysis of HMAC SHA-2 in the Hamming Weight Model and I want to understand the DPA Attack. In section 3.2.1 Path 1 (page 4) there is written:
The last remaining parts H$^{(0)}$ and C$^{(0)}$ can be recovered by making substitutions in Alg. 1: in Step 7 of round 1, where H$^{(0)}$ is the only unknown variable, and similarly in Step 8 of round 1 where C$^{(0)}$ is the only unknown variable.
The substitution for $H^{(0)}$ is clear to me:
- $T_1^{(1)} = \delta^{(0)} \boxplus W_1$ (1)
- $T_1^{(1)} = H^{(0)} \boxplus \sum_1(E^{(0)}) \boxplus Ch(E^{(0)},F^{(0)},G^{(0)}) \boxplus K_1 \boxplus W_1$ (2)
- (1) = (2):
- $\delta^{(0)} \boxplus W_1 = H^{(0)} \boxplus \sum_1(E_0) \boxplus Ch(E^{(0)},F^{(0)},G^{(0)}) \boxplus K_1 \boxplus W_1$
- $\delta^{(0)} = H^{(0)} \boxplus \sum_1(E^{(0)}) \boxplus Ch(E^{(0)},F^{(0)},G^{(0)}) \boxplus K_1$
- $H^{(0)} = \delta^{(0)} \boxminus \sum_1(E^{(0)}) \boxminus Ch(E^{(0)},F^{(0)},G^{(0)}) \boxminus K_1$
But for $C^{(0)}$ I don't know how to start and my other problem is that I don't know how to substitute in the function Maj?