I'm trying to build an AIC table for my candidate set of models in R, which were run using mlogit. I've used glm and glmer in the past, and have always used the package AICcmodavg and aictab to extract values and create a model selection table. This package doesn't seem to work for mlogit, so I'm wondering if there are any other ways of creating an AIC table in R besides manual calculation using the log-likelihood value?
Example of mlogit model output:
Call:
mlogit(formula = Case ~ Dist_boulder + Mesohabitat + Depth +
Size + Size^2 | -1, data = reach.dc, method = "nr")
Frequencies of alternatives:
0 1 2 3
1 0 0 0
nr method
5 iterations, 0h:0m:0s
g'(-H)^-1g = 1.19E-05
successive function values within tolerance limits
Coefficients :
Estimate Std. Error z-value Pr(>|z|)
Dist_boulder -0.052165 0.162047 -0.3219 0.74752
Mesohabitatriffle -1.400752 0.612329 -2.2876 0.02216 *
Mesohabitatrun 0.302697 0.420181 0.7204 0.47128
Depth 0.137524 0.162521 0.8462 0.39745
Size 0.336949 0.145036 2.3232 0.02017 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Log-Likelihood: -86.627
example of models run (from my candidate set of 14)
predation.reach<-mlogit(Case ~ Dist_boulder + Mesohabitat + Depth + Size + Size^2 | -1, data=reach.dc)
velocity.reach<-mlogit(Case ~ Mid_vel | -1, data=reach.dc)
spaces.reach<-mlogit(Case~ Embedded + Class | -1, data=reach.dc)
substrate.reach<-mlogit(Case ~ Class | -1, data=reach.dc)
defining candidate set list
cand.set.reach<-list(predation.reach, velocity.reach, spaces.reach, substrate.reach)