Consider two copies of an $n$ qubit Haar random state, given by:
\begin{equation} \rho = \mathbb{E}_{U \sim \mathsf{Haar}}\left[U |0^n\rangle \langle 0^n| U^{*}\otimes U |0^n\rangle \langle 0^n| U^{*}\right] = \frac{\Pi_{\text{symm}}}{2^n(2^n - 1)}, \end{equation}
where $\Pi_{\text{symm}}$ is the projector onto the symmetric subspace of appropriate dimensions and $\rho$ is over $2n$ qubits. For a particular $x \in \{0, 1\}^n$, I am trying to calculate the quantity:
\begin{equation} p_x = \mathsf{Tr}[|x\rangle \langle x| \otimes |x\rangle \langle x|~ \rho]. \end{equation}
Is there any nice expression of this quantity in terms of $x$? Moreover, is it true that for any choice of $x$,
$$0 \leq p_x \leq \frac{1}{2^n \cdot (2^n - 1)}?$$
I checked for $n=1$, when $\rho = \frac{I + \mathsf{SWAP}}{2}$, and it seemed to hold.