Lets $(X_n)_{n\in\mathbb{N}}$ be an iid sequence of standard normal random variables. Define $$M_n=\max_{1\leq i\leq n} X_i.$$ Prove that $$\lim_{n\rightarrow\infty} \frac{M_n}{\sqrt{2\log n}}=1\quad\text{a.s.}$$
I used the fact that $$\left(\frac{1}{x}-\frac{1}{x^3}\right)e^{-\frac{x^2}{2}}\leq\mathbb P(X_n>x)\leq \frac{1}{x}e^{-\frac{x^2}{2}},$$
and the Borel Cantelli lemmas to prove that $$\limsup_{n\rightarrow\infty} \frac{X_n}{\sqrt{2\log n}}=1\quad\text{a.s.}$$
I used Davide Giraudo's comment to show $$\limsup_n \frac{M_n}{\sqrt{2\log n}}=1\quad \text{a.s.}$$
I have no idea how to compute the $\liminf$. Borel-Cantelli give us tools to compute the $\limsup$ of sets, I am unsure of how to argue almost sure convergence. Any help would be appreciated.

\leq 1-(1-\frac{1}{\sqrt{(1+\epsilon)2(i+1)}}e^{-(1+\epsilon)(i+1)})^{2^i}$$
– anonymous Oct 07 '14 at 10:15