I recently read about Runge-Kutta methods for solving differential equations. So far I understood the idea but up to now nobody could answer the following question:
If we consider the explicit RK methods of order 4, we get for example the classical RK method, the Gills-formula and the 3/8 rule. They all do the 'same' but what is the difference between them? Do they have different properties or do we just have those different ones for historical reasons?
Classical:
$ \begin{array}{c|cccc} 0 & 0 & 0 & 0 & 0\\ 1/2 & 1/2 & 0 & 0 & 0\\ 1/2 & 0 & 1/2 & 0 & 0\\ 1 & 0 & 0 & 1 & 0\\ \hline & 1/6 & 1/3 & 1/3 & 1/6\\ \end{array}$
3/8 Rule:
$\begin{array}{c|cccc} 0 & 0 & 0 & 0 & 0\\ 1/3 & 1/3 & 0 & 0 & 0\\ 2/3 & -1/3 & 1 & 0 & 0\\ 1 & 1 & -1 & 1 & 0\\ \hline & 1/8 & 3/8 & 3/8 & 1/8\\ \end{array}$
Gills-formula:
$\begin{array}{c|cccc} 0 & 0 & 0 & 0 & 0\\ 1/2 & 1/2 & 0 & 0 & 0\\ 1/2 & \frac{\sqrt{2}-1}{2} & \frac{2-\sqrt{2}}{2} & 0 & 0\\ 1 & 0 & -\frac{\sqrt{2}}{2} & \frac{2+\sqrt{2}}{2} & 0\\ \hline & 1/6 & \frac{2-\sqrt{2}}{6} & \frac{2+\sqrt{2}}{6} & 1/6\\ \end{array}$