Consider the matrix-valued function $A: \mathbb{R}^n \rightarrow \mathbb{R}^{n \times n}$ defined as
$$ A( x ) := \left[ \begin{matrix} x_1 & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & x_2 & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & x_n \end{matrix} \right] $$
where $a_{i,j} \geq 0$ for all $i,j$. Define the matrix-valued function $F: \mathbb{R}^{ n } \rightarrow \mathbb{R}^{ n \times n }$ as
$$ F( x ) := \text{exp}( A(x) )$$
where $\text{exp}(\cdot)$ denotes the matrix exponential, i.e., $$\exp(A) := \sum_{k=0}^{\infty} \frac{A^k}{k!} = I + A + \frac{1}{2!} A^2 + \frac{1}{3! }A^3 + \cdots$$
Notice that $F$ is element-wise nonnegative, because it is the exponential of a Metzler matrix.
Let $f_{i,j} : \mathbb{R}^{ n } \rightarrow \mathbb{R}$ be the $(i,j)$-component of $F$, $f_{ij}(x) = F(x)_{ij}$.
Prove that, for all $i,j$, the function $f_{i,j}$ is convex.
Comment: I am trying to show that the second derivative of $f_{i,j}$ is nonnegative. I am also trying to show that the second derivative of $\mathbb{R} \ni t \mapsto \exp( A( x + t y ) )$ is nonnegative for all $x,y \in \mathbb{R}^n$.