The characteristic function of a random vector $\boldsymbol{X}$ is
$\varphi_{\boldsymbol{X}}(\boldsymbol{t}) =E[e^{i\boldsymbol{t}'\boldsymbol{X}}] $
Now suppose that $\boldsymbol{X} \in N(\boldsymbol{\mu},\boldsymbol{\Lambda})$. We observe that $Z = \boldsymbol{t}'\boldsymbol{X}$ has a one dimensional normal distribution. the parameters are $m = E[Z] = \boldsymbol{t}'\boldsymbol{\mu}$ and $\sigma^2 = \mathrm{Var}[Z] = \boldsymbol{t}'\boldsymbol{\Lambda}\boldsymbol{t} $($\boldsymbol{\Lambda} $ is the covariance matrix). since
$\textbf{(1)}\enspace \varphi_{\boldsymbol{X}}(\boldsymbol{t})=\varphi_{z}(1) = \exp\{im - \frac{1}{2}\sigma^2\}$
* my question is how does the equality in $ \textbf{(1)}$ end up being:
$\exp\{im - \frac{1}{2}\sigma^2\}$
I guess its a matter of algebra.Maybe someone could show me.
** clarification , $\boldsymbol{t}$ is a vector. therefore the multiplication above is $\boldsymbol{t}'\boldsymbol{X}= (t_1,t_z...t_n) \begin{pmatrix} X_1\\ X_2\\..\\X_n \end{pmatrix}$ where $t_i, i = 1,2..,n$ are real numbers
and the $\boldsymbol{t}'$ means the transpose of the vector $\textbf{t}$