$\newcommand{\+}{^{\dagger}}
\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\right\vert\,}
\newcommand{\ket}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
Use a semicircle in the upper complex plane since the function
$\expo{\ic\pi x}$ will assure the integral convergence ( the contribution of the upper arc will vanishes out when its radius goes to $\ds{\infty}$ ):
In the case described above, the integral has a $\ul{double}$ pole at $\ds{x = \ic}$:
\begin{align}
I&\equiv\color{#66f}{\large%
\int_{\mathbb R}{x\sin\pars{\pi x} \over \pars{1 + x^{2}}^{2}}\,\dd x}
=\Im\int_{-\infty}^{\infty}{x\expo{\ic\pi x} \over \pars{1 + x^{2}}^{2}}\,\dd x
\\[3mm]&=\Im\braces{2\pi\ic\lim_{x\ \to\ \ic}\totald{}{x}
\bracks{\pars{x - \ic}^{2}{x\expo{\ic\pi x} \over \pars{1 + x^{2}}^{2}}}}
\\[3mm]&=2\pi\,\Re\braces{\lim_{x\ \to\ \ic}\totald{}{x}
\bracks{{x\expo{\ic\pi x} \over \pars{x + \ic}^{2}}}}
=\color{#66f}{\large\half\,\expo{-\pi}\pi^{2}}
\end{align}