It is well-known that $L^{1}(\mathbb R)$ is a closed with respect to convolution(product), that is, $L^{1}(\mathbb R)\ast L^{1}(\mathbb R)\subset L^{1}(\mathbb R),$ more specifically, if $f, g\in L^{1}(\mathbb R) $, then $f\ast g \in L^{1}(\mathbb R);$ and further more, we have $\|f\ast g\|_{L^{1}(\mathbb R)}\leq \|f\|_{L^{1}(\mathbb R)} \cdot \|g\|_{L^{1}(\mathbb R)}.$ (Infect, it is Banach algebra)
We note that, $L^{p}(\mathbb R) (1<p<\infty)$ is not closed under convolution. (It is a Banach space but not a Banach algebra with respect to convolution )
Note that, $L^{1}(\mathbb R)\ast C^{k}(\mathbb R)\subset C^{k}(\mathbb R).$ (Bit roughly speaking, this tells us that, convolution is a smooth process)
Consider the Schwartz space, $\mathcal{S}(\mathbb R)= \{f\in C^{\infty}(\mathbb R): \sup_{x\in \mathbb R} (1+|x|)^{m} |\partial^{n} f(x) |< \infty, \forall m, n \in \mathbb N \} $
We also note that, $\mathcal{S(\mathbb R)}\ast \mathcal{S}(\mathbb R)\subset \mathcal{S}(\mathbb R),$ and $\mathcal{S}(\mathbb R)\subset L^{p}(\mathbb R).$
My Question is: Can we expect, $S(\mathbb R)\ast L^{p}(\mathbb R) \subset L^{p}(\mathbb R), (1<p<\infty);$ if yes, can we expect, $\|f\ast g\|_{L^{p}(\mathbb R)} \leq \|f\|_{L^{p}(\mathbb R)} \cdot \|g\|_{L^{p}(\mathbb R)}$ for $f\in \mathcal{S}(\mathbb R), g\in L^{p}(\mathbb R), (1<p<\infty)$ ?
Thanks,