Is there a standard trick to compute this integral for $y\ge 0$?
$\int_{-\infty} ^\infty \frac{\cos(xy)}{x^2+1}dx = \int_{-\infty}^{\infty}\frac{y \cos(x)}{x^2+y^2}$
Hopefully the same trick could be used to evaluate
$\int_{-\infty} ^\infty \frac{x\sin(x)}{x^2+y^2}dx$
Wolfram tells me these are both equal to $\pi e^{-y}$