$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\+}{^{\dagger}}
\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\right\vert\,}
\newcommand{\ket}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$$
\sum_{n = 1}^{\infty}{nx^{n} \over
\ds{2n \choose n}}:\ {\LARGE ?}
$$
\begin{align}
& \color{#66f}{\sum_{n = 1}^{\infty}{nx^{n} \over \ds{2n \choose n}}}
= \sum_{n = 1}^{\infty}nx^{n}\,
{\Gamma\pars{n + 1}\Gamma\pars{n + 1} \over \Gamma\pars{2n + 1}}
\\[5mm] = & \
\sum_{n = 1}^{\infty}n^{2}x^{n}\,
{\Gamma\pars{n}\Gamma\pars{n + 1} \over \Gamma\pars{2n + 1}}
= \sum_{n = 1}^{\infty}n^{2}x^{n}
\int_{0}^{1}t^{n - 1}\,\pars{1 - t}^{n}\,\dd t
\\[5mm] = & \
\int_{0}^{1}\sum_{n = 1}^{\infty}
n^{2}\bracks{xt\pars{1 - t}}^{n}
\,{\dd t \over t}
=
\int_{0}^{1}
\frac{(t-1) x \left(t^2 x-t x-1\right)}{\left(t^2 x-t x+1\right)^3}\,\dd t
\\[5mm] = & \
\bbx{\!\!\!\!\color{#66f}{\frac{x\bracks{6 \root{\pars{4 - x}x} + 4\pars{x + 2}
\arctan\pars{\root{x}/\root{4-x}}}}
{\pars{x - 4}^{2}\root{\pars{4 - x}x}}}\!\!\!}
\\ &
\end{align}