$\newcommand{\+}{^{\dagger}}
\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\right\vert\,}
\newcommand{\ket}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$

\begin{align}
&\int_{0}^{1}\expo{-x^{2}}\,\dd x
=\half\int_{0}^{2}\expo{-x^{2}/4}\,\dd x
\\[3mm]&\approx\half\braces{\sum_{k = 1}^{1}\expo{-k^{2}/4} + \half\bracks{1 + \expo{-2^{2}/4}}
- {1 \over 12}\bracks{-\,\half\,2\expo{-2^{2}/4}}}
\\[3mm]&=\half\,\expo{-1/4} + {1 \over 4} + {7 \over 24}\,\expo{-1}
=\color{#c00000}{0.746}6985619
\\[5mm]&\mbox{A more precise numerical integration yields}\quad 0.7468241328
\end{align}
The exact result is $\ds{\half\,\root{\pi}{\rm Erf}\pars{1}}$.
Information of the remainder can be seen in $\quad\large\tt\mbox{page 886}\quad$ of
this table.