Let $A_{nXn}(\mathbb{R})$ Skew-symmetric matrix $A=-A^t$ prove that $e^A(e^A)^t=I$
while: $e^A=\sum_{i=0}^{\infty} \frac{A^n}{n!}$
I tried this: $A=-A^t \Rightarrow A$ is Diagonalizable with orthogonal basis over $\mathbb{C}$ $\Rightarrow A=PDP^*$and $P^*=P^{-1}$ and D is: \begin{pmatrix} \lambda_1 &0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} we know that :$\lambda_i=0$ or $\lambda_i=ib$ for $b \in R$ because A is Skew-symmetric matrix. so: $e^A=Pe^DP^t$ so if I will prove that $\lambda_i=0$ we will get $e^A=PP^t=I$. Is it possible?