If A and B connected, is $A\cup B$ connected? or give a counterexample.
I'd say no because when we take $A=[1,2]$, $B=[3,4]$, these closed intervals are connected. But when we take $U=]\frac 12,\frac 52[ $ and $V=]\frac 52,\frac92[$
$$(A\cup B)\subset (U\cup V), (A\cup B)\cap V\neq\emptyset,(A\cup B)\cap U\neq\emptyset,(A\cup B)\cap V \cap U =\emptyset$$
Is this true and sufficient?