2

We say that $f$ is of bounded variation over $[a,b]$ or $f\in BV[a,b]$ if

$V_f[a,b] = \sup \sum_{k=1}^n |f(x_k) - f(x_{k-1})| < \infty, $ where the supremum is taken over all possible partitions of $[a,b]$


My question is:

If $f \in BV[a,b],$ show that $|f(x)|\leq |f(a)| + V_f[a,b] \ \ $ for all $x\in [a,b],$

so that $f$ is bounded on $I=[a,b]$.

1 Answers1

4

$$ V_f[a,b]\geq\left|f(x)-f(a)\right|+\left|f(b)-f(x)\right|\geq\left|f(x)-f(a)\right|\geq\left|\left|f(x)\right|-\left|f(a)\right|\right| $$