Statement 1: Let $f$ be twice differentiable. Then $f:\mathbb{R}\rightarrow\mathbb{R}$ is convex iff for all $x\in \mathbb{R}$
$$f''(x)\ge0.$$
Proof: Suppose $f$ convex. As $f$ is convex, for all $t\in(0,1]$ and for all $x,y\in\mathbb{R}$ holds,
$$f(x+t(y-x))=f(ty+(1-t)x)\le tf(y)+(1-t)f(x),$$
we have, $$t(f(y)-f(x))\ge f(x+t(y-x))-f(x).$$
So, $$f(y)-f(x)\ge\lim_{t\rightarrow0^{+}}\frac{f(x+t(y-x))-f(x)}{t}=f'(x)(y-x),$$
i.e.,
\begin{equation}
f(y)-f(x)\ge f'(x)(y-x).\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)
\end{equation}
By Taylor formula and by $(1)$, replace $y$ by $x+t(y-x)$, $x\neq y$, $t\in(0,1]$, we have
$$0\le f(x+t(y-x))-f(x)-tf'(x)(y-x)=\frac{t^{2}}{2}f''(x)(y-x)^{2}+o(t^{2}).$$
Dividing for $t^{2}$ e making $t\rightarrow 0^{+}$ we have, $$f''(x)\ge0.$$
Now suppose $f''(x)\ge0$ for all $x\in\mathbb{R}.$ By fundamental theorem of calculus, for all $x, y\in\mathbb{R}$,
$$f'(y)-f'(x)=\int_{0}^{1}f''(x+t(y-x))(y-x)dt$$, then
$$(f'(y)-f'(x))(y-x)=\int_{0}^{1}f''(x+t(y-x))(y-x)^{2}dt\ge 0,$$
therefore $(f'(y)-f'(x))(y-x)\ge 0$ for all $x,y\in\mathbb{R}$. So, again by fundamental theorem of calculus,
$$f(y)-f(x)=\int_{0}^{1}f'(x+t(y-x))(y-x)dt$$ and
$$f(y)-f(x)-f'(x)(y-x)=\int_{0}^{1}f'(x+t(y-x))(y-x)dt-f'(x)(y-x)$$
$$f(y)-f(x)-f'(x)(y-x)=\int_{0}^{1}[f'(x+t(y-x))(y-x)-f'(x)(y-x)]dt$$
$$f(y)-f(x)-f'(x)(y-x)=\int_{0}^{1}{[f'(x+t(y-x))-f'(x)](y-x)}dt\ge0,$$ then
\begin{equation}
f(y)-f(x)\ge f'(x)(y-x)\,\,\,\,\,\,\,(2)
\end{equation}
for all $x, y\in\mathbb{R}$. So, we have, for all $t\in[0,1]$,
$$f(x)\ge f(x+t(y-x))-tf'(x+t(y-x))(y-x)$$ and
$$f(y)\ge f(x+t(y-x))-(1-t)f'(x+t(y-x))(y-x),$$
we use $(2)$ to the points $x$ and $x+t(y-x)$; $y$ and $x+t(y-x)$ points respectively. Multiplicand the first inequality by $1-t$ and the second inequality by $t$ and adding both, we have,
$$(1-t)f(x)+tf(y)\ge f((1-t)x+ty),$$
for all $x,y\in\mathbb{R}$ and for all $t\in[0,1]$. Therefore $f$ is convex.
combinatorial geometryhave to do with this? – ViktorStein Apr 09 '20 at 15:44