I am trying to derive a marginal probability distribution for $y$, and failed, having tried all methods to solve the following integral:
$$ \operatorname{p}\left(y\right) = \int_0^{1/\sqrt{\,2\pi\,}}\!\!\!\! \frac{\sqrt{2/\pi}\,\,\mathrm{e}^{-y/\left(2z\right)}}{\sqrt{y\, z}\,\, \sqrt{-\log \left(2\pi\,z^2\right)}} \,\mathrm{d}z\quad \mbox{with}\quad y>0. $$
It is easy to verify that
$$\int_0^\infty \int_0^{\frac{1}{\sqrt{2 \pi }}} \frac{\sqrt{\frac{2}{\pi }} e^{-\frac{y}{2 \,z}}}{\sqrt{y\, z} \sqrt{-\log \left(2 \pi \, z^2\right)}} \, \mathrm{d}z \,\mathrm{d}y=1$$
After some work, figured out that, remarkably, we can get the fist moment, $\mathbb{E}(y)=\frac{1}{2 \sqrt{\pi }}$ and $\mathbb{E}(y^2)=\frac{\sqrt{3}}{2 \pi }$ without the density.