Can anybody please tell me, how to evaluate a multivariate integral with a gaussian weight function. $$\mathcal{Z_{n}}=\int_{-\infty}^{\infty} dx_{1}dx_{2}dx_{3}dx_{4}...dx_{n}\exp(-\frac{a}{2}\sum_{j}x_{j}^2)\times f(x_{1},x_{2},x_{3},x_{4}....x_{n})$$ where $f(x_{1},x_{2},x_{3},x_{4}....x_{n})=\Pi_{j} \frac{1}{\sqrt{(1+i\,b(x_{j}^2-x_{j+1}^2)^2)}}$, and $i=\sqrt{-1}$. Also we have the condition $x_{n+1}=x_{1}$.
I need a hint to solve this integral. This is how I proceeded,
\begin{eqnarray} \mathcal{Z_{n}}=\int_{-\infty}^{\infty} \Pi_{j=1}^{n} dx_{j} \exp{\Bigg(-\frac{a}{2}\sum_{j=1}^{n}x_{j}^2-\frac{1}{2}\log{\Big(1+i b(x_{j}^2-x_{j+1}^2)^{2}\Big)\Bigg)}} \end{eqnarray}
Now the integral is of the form of the canonical partition function integrated over the configuration space. Hence the integral can be identified as an $n-$particle partition of the canonical ensemble, which is given by \begin{eqnarray} \mathcal{Z}_{n}= \int_{-\infty}^{\infty} \Pi_{j=1}^{n} dx_{j} e^{-\beta \mathcal{H}}, \end{eqnarray} where $$\mathcal{H}=\Bigg(\frac{a}{2}\sum_{j=1}^{n}x_{j}^2+\frac{1}{2}\log{\Big(1+i b(x_{j}^2-x_{j+1}^2)^{2}\Big)\Bigg)}.$$ and $\beta=1$. Then I got stuck !