Exercise: Let $x_1,x_2,...,x_n$ be real positive numbers. Prove the arithmetic-geometric mean inequality, $(x_1x_2...x_n)^{1/n}\le (x_1+x_2+...+x_n)/n$.
Hint: Consider the function $f(x_1,x_2,...,x_n)=(x_1+x_2+...+x_n)/n$ subject to the constraint $x_1x_2...x_n=c$ a constant.
My work:
Consider $f(x_1,x_2,...x_n)=(x_1+x_2+...+x_n)/n$ on $S=\{(x_1,x_2,...,x_n) | x_1x_2...x_n=c\}$
$g(x_1,x_2,...,x_n)=x_1x_2...x_n-c=0$
$\nabla f(x_1,x_2,...,x_n)=(1/n,1/n...,1/n)$
$\nabla g(x_1,x_2,...,x_n)=(c/x_1,c/x_2,...c/x_n)$
$\nabla f = \lambda \nabla g$
$1/(n\lambda)=c/x_1=c/x_2=...=c/x_n$
$x_1=x_2=...=x_n=n\lambda c$
At the point $(n\lambda c, n\lambda c,... n\lambda c)$, $f$ on $S$ takes either a maximum or a minimum.
$f(n\lambda c, n\lambda c,...,n\lambda c)=n(n\lambda c)/n=n\lambda c$
$(n\lambda c*n\lambda c*...*n\lambda c)^{1/n}=((n\lambda c)^n)^{1/n}=n\lambda c = f(n\lambda c, n\lambda c,...,n\lambda c)$
This shows the equality case. To prove the inequality, I want to show that at the point $(n\lambda c,n\lambda c,...,n\lambda c)$, $f$ on $S$ takes a maximum minimum. I tried proving that the Hessian is negative positive definite, but I had trouble working with the second derivatives. I've looked up various proofs for the AM-GM inequality. The Lagrange ones didn't make full sense to me, so I thought I would turn to MSE. Any ideas? Thanks!