I am struggling to understand Quantifier Elimination as it is treated in Hodges' "A Shorter Model Theory". The relevant definitions are :
Definition: Take $K$ to be a class of $L$-structures, for $L$ a first-order language. An elimination set for $K$ is a set of formulas $\Phi \subseteq L$ such that for every formula $\phi (\bar{x}) \in L$ there is a formula $\phi^{*}(\bar{x}) \in \Phi$ which is a boolean combination of formulas in $\Phi$ and $\phi(\bar{x})$ is equivalent to $\phi^{*}(\bar{x})$ in every structure in K
Definition: Let $T$ be a first-order $L$ theory. $T$ has quantifier elimination if the set of quantifier-free formula in $L$ forms an elimination set for all models of $T$.
Hodges talks about a process where starting with a class $K$ of $L$-structures, a theory $T$ serving as a candidate for axiomatization of $K$, and a set of $L$-formula $\Phi$ that serves as a candidate for an elimination set for $K$. And we build up $T$ and $\Phi$ simultaneously, using the following theorem:
Theorem: Suppose that every atomic formula of $L$ is in $\Phi$, and for every formula $\theta(\bar{x}) \in L$ which is of the form $\exists y \bigwedge_{i < n} \psi_{i}(\bar{x}, y)$ with each $\psi_{i}$ in $\Phi$ or a negation of a formula in $\Phi$, there is a formula $\theta^{*}(\bar{x})$ of $L$ which
(i) is a boolean combination of formulas in $\Phi$ and,
(ii) is equivalent in every structure of $K$
Then $\Phi$ is an elimination set for $K$
But I am not sure what is meant specifically or intuitively. If someone could shed some light on this and help me understand what this process looks like or means, I would greatly appreciate it.