Just a bit late for an interesting integral.
$$I=\int \frac{\sin^2(x)}{x^2(x^2+1)}\,dx=\frac 12 \int \frac{1-\cos(2x)}{x^2(x^2+1)}\,dx$$
$$I=\frac{1}{2} \left(\frac{1}{x}+\tan ^{-1}(x)\right)-\frac 12 \int \frac{\cos(2x)}{x^2(x+i)(x-i)}\,dx$$
Using partial fractions
$$\frac{1}{x^2(x+i)(x-i)}=\frac{1}{x^2}-\frac{i}{2 (x+i)}+\frac{i}{2 (x-i)}$$
$$\int \frac{\cos(2x)}{x^2}\,dx=-2\, \text{Si}(2 x)-\frac{\cos (2 x)}{x}$$
$$J_a=\int \frac{\cos(2x)}{x+a}\, dx$$$$x=t-a \quad \implies \quad J_a=\cos(2a)\int \frac{\cos(2t)}{t}\, dt+\sin(2a)\int \frac{\sin(2t)}{t}\, dt$$
Combining all the above gives a bunch of terms. Using the bounds
$$\int_0^\infty \frac{\sin^2(x)}{x^2(x^2+1)}\,dx=\frac{1}{4} \left(3+\frac{1}{e^2}\right) \pi-\frac \pi 2=\frac{\left(1+e^2\right) \pi }{4 e^2}$$