Below is an approach using basic gcd arithmetic (associative, commutative, distributive laws), some of which you may need to (simply) prove before you can use this method (once done, you will gain great power). Below we explicitly show that $\rm\:a,b\:$ are squares by taking gcds. Namely
Lemma $\rm\ \ \color{#0a0}{(a,b,c) = 1},\,\ \color{#c00}{c^2 = ab}\ \Rightarrow\ a = (a,c)^2,\,\ b = (b,c)^2\ $ for $\rm\:a,b,c\in \mathbb N$
Proof $\rm\ \ (a,c)^2 = (a^2,\color{#c00}{c^2},ac) = (a^2,\color{#c00}{ab},ac) = a\color{#0a0}{(a,b,c)} = a.\ $ Similarly for $\,\rm(b,c)^2.\ \ $ QED
OP is the special case $\rm\:(a,b) = 1\ (\Rightarrow\ (a,b,c) = 1)$.
Generally $\rm\: \color{#c00}{ab = cd}\: \Rightarrow\: (a,c)(a,d) = (aa,\color{#c00}{cd},ac,ad) = a\:\!(a,\color{#c00}b,c,d) = a\:$ if $\rm\:(a,b,c,d)\! =\! 1.\:$ For more on this and closely related topics such as Euler's four number theorem (Vierzahlensatz), Riesz interpolation, or Schreier refinement see this post and this post.
The Lemma easily generalizes from squares to $n$'th powers - see here.
Compare the following Bezout-based proof (this is a simplified form of the proof in Rob's answer).
Note that $\ 1=\overbrace{a{\rm u}+b\,{\rm v}}^{\large (a,b)}\,\ \overset{\large \times\,a}\Rightarrow\ a = \color{#c00}{a^2}{\rm u}+\!\!\overbrace{ab}^{\Large\ \ \color{#c00}{c^2}}{\rm v} \ \,$ so $\,\ d=(a,c)\mid a,c\,\Rightarrow\, d^2\!\mid \color{#c00}{a^2,c^2}\,\Rightarrow\, d^2\!\mid a$
Conversely $\ d = (a,c)= au+cv\,\ \Rightarrow\,\ d^2=\,\color{#c00}{a^2}u^2+2\color{#c00}acuv+\color{#c00}{c^2}v^2\ \ $ thus $\ \ \color{#c00}{a\mid c^2}\ \Rightarrow\,\ \color{#c00}a\mid d^2$
$\quad\ \ {\rm i.e.}\quad (d)= (a,c)\ \ \Rightarrow\ \ (d^2) \:\!\subseteq\, (a,c^2)\,\color{#0a0}{\subseteq\, (a)}\ \ $ by $\ \ a\mid c^2\,\ $ [simpler ideal form of prior]
Simpler, $ $ via above Lemma: $\,\ (d)^2 =\, (a,c)^2 \color{#0a0}{=\, (a)}.\,$
Note how this ideal / gcd version eliminates the obfuscatory Bezout coefficients $\,u,v,\,$ and allows us to simultaneously prove both directions .