Let's call a category rigid if every self-equivalence is isomorphic to the identity. For example, $\mathsf{Set}$, $\mathsf{Grp}$, $\mathsf{Ab}$, $\mathsf{CRing}$ (MO/106838), $\mathsf{Top}$ (SE/450193) are rigid, but $\mathsf{Mon}$, $\mathsf{Ring}$ and $\mathsf{Pos}$ are not (the automorphism class group has order $2$ in these examples). See (MO/56887) for some ideas how to approach the rigidity of $\mathsf{Sch}$. In each case the idea is that a category is rigid if every object can be defined in a categorical way, which is a quite interesting property. The paper "The automorphism class group of the category of rings" by Clark, Bergman (link) explains this in detail.
Question. Is the category of fields $\mathsf{Fld}$ rigid?
Here are some notions from field theory with categorical definitions (thus preserved by self-equivalences):
The category of field extensions of $K$ is the comma category $K / \mathsf{Fld}$.
Call $L/K$ locally finite if $\hom_K(L,L')$ is finite for all $L'/K$.
- $L/K$ is algebraic iff it is a directed colimit of locally finite extensions.
- $L/K$ is transcendent iff it is not algebraic.
- A field extension of $K$ is isomorphic to $K(x)$ iff it is transcendent and maps to every other trancendent extension (Lüroth's Theorem).
- For a field $K$, we have $\mathrm{PGL}_2(K) \cong \mathrm{Aut}_K(K(x))$ given by mapping $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot K^* $ to $x \mapsto \dfrac{ax+b}{cx+d}$.
I've learned from MO/106838 that $\mathrm{PGL}_2(K)$ and $\mathrm{PGL}_2(L)$ are only isomorphic when $K \cong L$. Is there a direct proof for this? Does someone know at least a more modern reference? Is there perhaps even a reconstruction procedure of a field $K$ from $\mathrm{PGL}_2(K)$?
Thus, if $F : \mathsf{Fld} \to \mathsf{Fld}$ is an equivalence, then $F(K(x)) \cong F(K)(x)$ for every field $K$, inducing a group isomorphism $\mathrm{PGL}_2(K) \cong \mathrm{PGL}_2(F(K))$, which shows the existence of some isomorphism $F(K) \cong K$.
I hope that this is correct so far. But this is almost what we want. Namely, we have to find isomorphisms $F(K) \cong K$ which are natural in $K$. The methods from $\mathsf{CRing}$ (classification of coring structures on $\mathbb{Z}[x]$) don't apply here.
Some further categorical definitions which might be helpful (or interesting in their own right):
- $K$ is a prime field iff every morphism $K' \to K$ is an isomorphism
- $K \cong \mathbb{F}_p$ iff $\mathrm{PGL_2}(K)$ is finite and of order $p(p^2-1)$. Hence, $K \cong \mathbb{Q}$ iff $K$ is a prime field and not isomorphic to some $\mathbb{F}_p$. Hence, $\mathrm{char}(K)=p$ iff there is some $\mathbb{F}_p \to K$ and $\mathrm{char}(K)=0$ iff there is some $\mathbb{Q} \to K$.
- $K$ is algebraically closed if every algebraic extension $K \to L$ is an isomorphism. $L/K$ is an algebraic closure iff it is algebraic and $L$ is algebraically closed.
- $L/K$ is normal if for some (every) algebraic closure $\overline{K}/K$ the group $\mathrm{Aut}_K(L)$ acts transitively on $\hom_K(L,\overline{K})$.
- $L/K$ is purely inseparable iff $|\hom_K(L,\overline{K})|=1$ iff $K \to L$ is an epimorphism.
- $L/K$ is separable iff $L/K$ is algebraic and for all factorizations $K \to L' \to L$ with $L' \to L$ purely inseparable, $L' \to L$ is an isomorphism.
- $L/K$ is finite iff $L/K$ is algebraic and $\hom_K(L,-)$ preserves directed colimits (i.e. $L/K$ is a finitely presentable object of $K/\mathsf{Fld}$).
- An algebraic extension is simple iff it has only finitely many intermediate extensions.
- The degree $[L:K]$ of a finite extension $L/K$ is characterized in two steps. By the degree formula, it suffices to treat two cases: 1. $L/K$ is separable. Then $[L:K] := |\hom_K(L,\overline{K})|$. 2. $L/K$ is purely inseparable. Let $p=\mathrm{char}(K)>0$. Then one can prove $[L:K]=p^n$, where $n$ is the longest length of a chain of intermediate extensions.