The symplectic group $Sp(2n,\mathbb{C})$ is defined as $A\in\mathbb{C}^{2n\times 2n}$ such that $A^TJA=J$, where: $J=\left(\begin{array}{cc} 0& I_n \\ -I_n & 0 \end{array}\right)$ and $I_n$ is the identity matrix in $\mathbb{C}^n$. In other words, a matrix is a member of the symplectic group if it preserves the bilinear form for $x,y\in\mathbb{C}^{2n}$:
$\langle x,y\rangle=x^TJy$ (1)
That is my understanding from the appendix of Tu's 'An Introduction to Manifolds (Second edition)'.
What is the motivation for this? The symplectic group $Sp(n)$ is defined as elements of $\mathbb{H}^n$ which preserve sesquilinear the form for $p,q\in\mathbb{H}^n$:
$\langle p,q\rangle=\overline{p}^Tq$ (2)
Suppose we have some quarternion $q=a+b\mathrm{i}+c\mathrm{j}+d\mathrm{k}$. Using (2) we find:
$\langle q,q\rangle=(a-b\mathrm{i}-c\mathrm{j}-d\mathrm{k})(a+b\mathrm{i}+c\mathrm{j}+d\mathrm{k})=a^2+b^2+c^2+d^2$$
However if we use the mapping $\mathbb{H}\rightarrow\mathbb{C}^2$: $a+b\mathrm{i}+c\mathrm{j}+d\mathrm{k}=(a+b\mathrm{i}) + \mathrm{j}(c-d\mathrm{i})\rightarrow(a+b\mathrm{i},c-d\mathrm{i})$ then under (1):
$\langle p,p\rangle=\left(\begin{array}{cc} a+b\mathrm{i} & c-d\mathrm{i}\end{array}\right)J\left(\begin{array}{c}a+b\mathrm{i} \\ c-d\mathrm{i}\end{array}\right)=\left(\begin{array}{cc} a+b\mathrm{i} & c-d\mathrm{i}\end{array}\right)\left(\begin{array}{c}c-d\mathrm{i} \\ -a-b\mathrm{i}\end{array}\right)=0$
The two forms (1) and (2) seem different. How are they related to each other, and what is the motivation for (1)?