First, let us notice that, due of the the oddity of the sine function, we have $(-x)\sin(-x)=(-x)\cdot$ $(-\sin x)=x\sin x\iff I=2\int_0^\infty xe^{-\frac{x^2}2}\sin kx\,dx$. Secondly, since $\sin kx=\Im(e^{ikx})$, we have $I=2\cdot\Im\left[\int_0^\infty xe^{-\left(\frac{x^2}2-ikx\right)}dx\right]$, where $\Im(z)=\Im(a+bi)=b$. Now, let us pay a closer look at the exponent : $\frac{x^2}2-ikx=\frac12(x^2-2ikx)=\frac12\Big[(x-ik)^2+k^2\Big]=\frac{t^2+k^2}2$, where $t=x-ik$, and $dt$ $=dx$. Then:
$$I=2\,\Im\left[\int_{0-ik}^{\infty-ik}(t+ik)e^{-\frac{t^2+k^2}2}dt\right]=2\,\Im\left[\int_{0-ik}^{\infty-ik}te^{-\frac{t^2+k^2}2}dt+ik\int_{0-ik}^{\infty-ik}e^{-\frac{t^2+k^2}2}dt\right]=$$
$$=2\,\Im\left[\int_0^\infty e^{-u}du+ike^{-\frac{k^2}2}\int_{0-ik}^{\infty-ik}e^{-\frac{t^2}2}dt\right]=2\,\Im\left[1+ike^{-\frac{k^2}2}\sqrt\frac\pi2\left(1+\text{Erf}\left(\tfrac{ki}{\sqrt2}\right)\right)\right]=$$
$=ke^{-\frac{k^2}2}\sqrt{2\pi}$ , since the error function of purely imaginary argument is purely imaginary as well, meaning that i times itself possesses no imaginary part, and hence does not ultimately influence the final result.