I'm given the following question:
Convert the following WFF into clausal form: \begin{equation*} \forall(X)(q(X)\to(\exists(Y)(\neg(p(X,Y)\vee r(X,Y))\to h(X,Y))\wedge f(X))) \end{equation*}
This is what I've gotten so far, but I'm not confident that I'm in the proper form at the end.
First, eliminate the implications: \begin{gather} \forall(X)(q(X)\to(\exists(Y)((p(X,Y)\vee r(X,Y))\vee h(X,Y))\wedge f(X)))\\ \forall(X)(\neg q(X)\vee(\exists(Y)((p(X,Y)\vee r(X,Y))\vee h(X,Y))\wedge f(X))) \end{gather} Move the quantifiers out front: \begin{gather} \forall(X)\exists(Y)(\neg q(X)\vee((p(X,Y)\vee r(X,Y)\vee h(X,Y))\wedge f(X))) \end{gather} Skolemize existential quantifiers with $g(X)/Y$: \begin{gather} \forall(X)(\neg q(X)\vee((p(X,g(X))\vee r(X,g(X))\vee h(X,g(X)))\wedge f(X))) \end{gather} Remove universal quantifiers: \begin{gather} \neg q(X)\vee((p(X,g(X))\vee r(X,g(X))\vee h(X,g(X)))\wedge f(X)) \end{gather}