Let ${ V, W, X}$ be ${ k - }$vector spaces.
Let
$${ V \times W \overset{f}{\longrightarrow} X }$$
be a bilinear map.
Can we factor the bilinear map
$${ V \times W \overset{f, \, \, \text{bilin}}{\longrightarrow} X }$$
as
$${ V \times W \overset{\pi, \, \, \text{bilin}}{\longrightarrow} V \otimes W \overset{\tilde{f}, \, \, \text{lin}}{\longrightarrow} X }$$
where ${ \pi }$ is a canonical bilinear map?
We want to have
- ${ V \otimes W }$ is a vector space.
- ${ (v, w) \mapsto \pi(v, w) }$ is bilinear.
- For any bilinear map ${ V \times W \overset{f}{\longrightarrow} X }$ there is a unique linear map
${ V \otimes W \overset{\tilde{f}}{\longrightarrow} X }$ such that ${ f(v,w) = \tilde{f}(\pi(v, w)) . }$
To ensure the first property, we can consider the free vector space ${ \mathcal{F}(V \times W) . }$
We will pick a quotient ${ \mathcal{F}(V \times W) / U }$ such that
$${ {\begin{aligned} &\, V \times W \overset{\pi}{\longrightarrow} \mathcal{F}(V \times W) / U, \quad \\ &\, \pi(v, w) = (v, w) + U \end{aligned}} }$$
is a valid candidate for ${ \pi . }$
Note that the first condition is satisfied. Note that to satisfy the second condition we want
$${ {\begin{aligned} &\, \text{Want: } \\ &\, (v _1 + v _2, w) + U = (v _1 , w) + (v _2, w) + U , \\ &\, (\alpha v, w) + U = \alpha (v, w) + U, \\ &\, (v, w _1 + w _2) + U = (v , w _1) + (v, w _2) + U, \\ &\, (v, \alpha w) + U = \alpha (v, w) + U \end{aligned}} }$$
that is
$${ {\begin{aligned} &\, \text{Want: } \\ &\, (v _1 + v _2, w) - (v _1 , w) - (v _2, w) \in U , \\ &\, (\alpha v, w) - \alpha (v, w) \in U, \\ &\, (v, w _1 + w _2) - (v , w _1) - (v, w _2) \in U, \\ &\, (v, \alpha w) - \alpha (v, w) \in U . \end{aligned}} }$$
Hence we can define ${ U }$ to be the subspace generated by the elements
$${ U := {\begin{aligned} &\, \text{Subspace generated by the elements} \\ &\, (v _1 + v _2, w) - (v _1 , w) - (v _2, w) , \\ &\, (\alpha v, w) - \alpha (v, w), \\ &\, (v, w _1 + w _2) - (v , w _1) - (v, w _2), \\ &\, (v, \alpha w) - \alpha (v, w) . \end{aligned}} }$$
This fixes ${ \pi . }$ It suffices to verify the third condition is satisfied.
Let ${ V \times W \overset{f}{\longrightarrow} X }$ be a bilinear map. Consider the map
$${ {\begin{aligned} &\, \mathcal{F}(V \times W) / U \overset{\tilde{f}}{\longrightarrow} X , \\ &\, \tilde{f}\left( \sum _{\text{finite}} \alpha _i (v _i, w _i) + U \right) := \sum _{\text{finite}} \alpha _i f \left(v _i, w _i \right) . \end{aligned}} }$$
Is ${ \tilde{f} }$ well defined? Is ${ \tilde{f} }$ a linear map?
Yes.
The linear map
$${ {\begin{aligned} &\, \mathcal{F}(V \times W) \longrightarrow X, \\ &\, \left( \sum _{\text{finite}} \alpha _i (v _i, w _i) \right) \longmapsto \sum _{\text{finite}} \alpha _i f(v _i, w _i) \end{aligned}} }$$
vanishes on the subspace ${ U . }$ This induces the linear map ${ \tilde{f} }$ above.
Hence ${ \tilde{f} }$ is a well defined linear map.
Is ${ f = \tilde{f} \circ \pi }$?
Yes.
Note that
$${ f(v, w) = \tilde{f}(\pi(v, w)) }$$
that is ${ f = \tilde{f} \circ \pi . }$
Is ${ \tilde{f} }$ the unique linear map ${ \mathcal{F}(V \times W) / U \longrightarrow X }$ such that ${ f = \tilde{f} \circ \pi }$?
Yes.
Suppose there were another linear map ${ \tilde{f} ^{’} : \mathcal{F}(V \times W) / U \longrightarrow X }$ with the property ${ f = \tilde{f} ^{’} \circ \pi . }$ Note that ${ \tilde{f} ^{’} ((v, w) + U) = f(v, w). }$ Hence by linearity ${ \tilde{f} ^{’} \left( \sum _{\text{finite}} \alpha _i (v _i, w _i) + U \right) = \sum _{\text{finite}} \alpha _i f(v _i, w _i) . }$ Hence ${ \tilde{f} ^{’} = \tilde{f} . }$
Hence we have the required factorisation result.
We denote ${ \pi(v, w) }$ by ${ \otimes (v, w) = v \otimes w . }$
We can also show (for eg, as in Knapp’s Algebra book) that any bilinear map ${ \pi }$ with the above three properties is essentially unique (i.e. unique upto composing by isomorphisms).