Suppose the application $$f:\mathbb{N}^{*}\rightarrow\mathbb{R}$$
$$n\rightarrow\sum_{k=1}^{n}\frac{1}{k}$$How can I prove that $f(\mathbb{N}^*)\cap\mathbb{N}=\{1\}$?
Suppose the application $$f:\mathbb{N}^{*}\rightarrow\mathbb{R}$$
$$n\rightarrow\sum_{k=1}^{n}\frac{1}{k}$$How can I prove that $f(\mathbb{N}^*)\cap\mathbb{N}=\{1\}$?
Let $\;r\in\Bbb N\;$ be such that $\;2^r\le n!<2^{r+1}\;$ . We have
$$1+\frac12+\ldots+\frac1n=\frac{ n!+\frac{n!}2+\ldots+\frac{n!}{n!}}{n!}$$
Now, $\;2^r\;$ divides the denominator and all the summands in the numerator above except one, namely $\;\frac{n!}2\;$ , and from here that the expression cannot be an integer number...