1

It follows that $ \int\limits_0^\infty \frac{x^{3}}{e^{x} - 1} \mathrm{d}x = \frac{\pi^{4}}{15},~ \int\limits_0^\infty \frac{x^{3}}{e^{x} + 1} \mathrm{d}x = \frac{7 \pi^{4}}{120},~ \int\limits_0^\infty \frac{x^{5}}{e^{x} - 1} \mathrm{d}x = \frac{8 \pi^{6}}{63},~ \int\limits_0^\infty \frac{x^{2}}{e^{x} - 1} \mathrm{d}x = 2 \zeta (3).$

How did we get those results?

Potato
  • 41,411
jacie
  • 79
  • 6

0 Answers0