I know that sum of independent Exponential random variables follows Gamma distribution.
But
Is it possible to decompose exponential random variate into independent and identically gamma random variates?
I know that sum of independent Exponential random variables follows Gamma distribution.
But
Is it possible to decompose exponential random variate into independent and identically gamma random variates?
The exponential distribution with parameter $\lambda$ is the gamma $(1,\lambda)$ distribution. The convolution of a gamma $(a,\lambda)$ distribution and a gamma $(b,\lambda)$ distribution is a gamma $(a+b,\lambda)$ distribution. Hence, summing $n$ i.i.d. random variables with gamma $(\frac1n,\lambda)$ distribution yields an exponential random variable with parameter $\lambda$
The exponential distribution of mean $\lambda^{-1} > 0$ is actually $\Gamma(1,\lambda)$. So, if you take $X_1,\dots,X_n$ i.i.d. with $\Gamma(n^{-1},\lambda)$, then $$ X_1 + X_2 + \dots + X_n \sim \mathcal{E}(\lambda). $$